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Abstract
Exact numerical results for the full counting statistics (FCS) of a one-dimensional tight-binding
model of noninteracting electrons are presented at finite temperatures using an identity recently
published by Abanov and Ivanov. A similar idea is used to derive an explicit expression for the
cumulant generating function for a system consisting of two quasi-one-dimensional leads
connected by a quantum dot in the long-time limit, generalizing the Levitov–Lesovik formula
for two single-channel leads to systems with an arbitrary number of transverse channels.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The theory of noise in quantum transport in mesoscopic
systems is a very active field of research [1, 2]. In addition
to the first few moments of the transmitted charge the full
probability distribution can be addressed, called full counting
statistics (FCS). The systems usually studied consist of a
finite ‘dot’ region connected to N leads which initially are
separated from the dot region and have different chemical
potentials [3–6]. After connecting the subsystems the time
evolution of the particle transfer between the leads is studied.

In this paper we focus on systems with two quasi-one-
dimensional noninteracting leads. The ‘left’ lead consists of
ML transverse channels and the initial state is described by
a grand canonical ensemble with chemical potential μL and
temperature TL = βL/kB. This lead is connected via a finite
dot region to the ‘right’ lead with MR = M − ML transverse
channels, chemical potential μR � μL and temperature TR =
βR/kB.

For noninteracting electrons the calculation of the
characteristic function of the probability function of the
transferred charge can be exactly reduced to the evaluation
of a time-dependent determinant over the full one-particle
Hilbert space [7]. For the lattice systems studied in this

paper the dimension of this space is finite before taking
the thermodynamic limit. Exact results can be obtained
for very large but finite systems by numerically calculating
this determinant. For times t smaller than the time it
takes the ‘charge fronts’ which move into the subsystems
after connecting them to return to the connection point after
reflection at the boundaries the results are almost independent
of the size of the system [8].

The long-time limit was investigated by Levitov and
Lesovik [3] for infinite leads. They presented the leading-
time order result for the logarithm of the characteristic function
(linear in t) as an energy integral over the logarithm of
a determinant of an M × M matrix which involves the
scattering matrix s(ε) for a single particle. For two single-
channel leads, i.e. a strictly one-dimensional system, the
2 × 2 determinant was explicitly evaluated [3]. The result
involving the transmission probability T (ε) and the Fermi
functions of the two leads is usually called the ‘Levitov–
Lesovik formula’. In order to contrast it from the general
leading long-time approximation involving the determinant
of an M × M matrix it is called the ‘two single-channel
lead Levitov–Lesovik formula’ in the following. For perfect
transmission this formula leads at zero temperature to a delta
function for the probability distribution of the transferred
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charge incorrectly signalling ‘zero shot noise’. It was
shown previously that, in the case of perfect transmission at
zero temperature, the logarithm of the characteristic function
increases logarithmically with time, leading to a probability
distribution of finite width also at zero temperature [8, 9].

In addition to exact numerical calculations for M = 2 an
explicit result for the temperature-dependent Levitov–Lesovik
M × M determinant is presented in terms of the eigenvalues
of a temperature-independent matrix. The result is a sum of
terms in the form appearing in the two single-channel lead
Levitov–Lesovik formula and might have been guessed from
the well-known results for the first two cumulants for this
general case [1].

For the strictly one-dimensional case ML = MR =
1 exact numerical results were obtained for large but finite
lattices at zero temperature [8]. The first step to obtain the
probability distribution of the number of electrons transmitted
to the right lead was to calculate the time dependence of
the one-particle projection operator PR(t) onto the right lead.
At zero temperature only P̄R(t) = n̄0 PR(t)n̄0 enters, where
n̄0 is the projection operator onto the initially occupied one-
particle states. The eigenvalues pm(t) of P̄R(t) determine
the probability distribution wR of the number of particles
transferred to the right lead. The time-dependent entanglement
entropy after connecting the subsystems can also be simply
expressed in terms of these eigenvalues [10].

There are approximately Nt = t (μL − μR)/(2π)

eigenvalues pm(t) ≈ T (μR + 2π(m − 1/2)/t) different
from zero and one in the long-time limit, where T (ε) is the
transmission probability [8]. The transition region of the finite
eigenvalues to the zero eigenvalues is not captured by this
expression. In order to obtain analytical approximations for
the exact numerical eigenvalues in this regime the logarithmic
correction in the large time limit has to be known.

For finite temperatures the probability distribution is
determined by PR(t) in the full one-particle Hilbert space.
A clever rewriting of the determinantal expression for the
characteristic function [11] allows a simple generalization
of the zero-temperature numerical procedure to obtain
finite-temperature results. In section 2 exact results are
presented for a strictly one-dimensional tight-binding model,
i.e. ML = MR = 1. In the long-time limit an
accurate analytical approximation for the eigenvalues of the
temperature-dependent operator X (t) introduced by Adamov
and Ivanov (AI) [11] is presented which replaces P̄R(t) at finite
temperatures.

The analytical expression for the eigenvalues of X (t) is
extended to arbitrary values of ML and MR in section 4 by
using a similar rewriting as used by Adamov and Ivanov [11]
for the leading order in t result for the logarithm of the
characteristic function gR corresponding to wR. This derivation
also provides a simple derivation of the explicit generalized
Levitov–Lesovik formula already mentioned. For the special
case MR = 2 a comparison is made with analytical results
derived earlier [12].

In section 5 the generalized long-time approximation is
elucidated for a model with leads which are stripes of equal
width and, apart from a single site impurity, a perfect transition
region.

2. Counting statistics for noninteracting electrons

2.1. General formulation

In the following we consider a system which consists of a finite
‘dot’ region described by the Hamiltonian H dot

0 connected to
the left and right lead with Hamiltonians H0,a with a = L, R.
The leads are initially separated from the dot region. The
number of electrons in the initial state are Ndot

0 and N0,a . We
assume the initial state |�(0)〉 to be an eigenstate of H dot

0 and
the H0,a:

|�(0)〉 = |E N dot
0

i 〉 ⊗ |E N0,L
n 〉 ⊗ |E N0,R

p 〉. (1)

The time evolution for times greater than zero is described by
the Hamiltonian

H = H dot
0 + H0,L + H0,R +

∑

a

Va ≡ H0 + V . (2)

The term V which couples the leads with the dot region will
be specified later. The probability distribution that Q electrons
are transferred to the right system after time t is given by

wR(t, Q) = 〈�(t)|δ[Q − (NR − N0,R)]|�(t)〉
= 1

2π

∫
dλ e−iλQ gR(t, λ). (3)

Here NR is the particle number operator of the right lead and
gR(t, λ) is the characteristic function. With the particle number
operators Na(t) in the Heisenberg picture it is given by

gR(t, λ) = 〈�(0)|eiλNR(t)e−iλNR |�(0)〉. (4)

The assumption that the initial state is an eigenstate of
the particle number operators was used. For initially
grand canonical subensembles with different temperatures and
chemical potentials

ρ
(a)

0 = e−βa(H0,a−μaNa)

Trae−βa(H0,a−μaNa)
, (5)

and ρdot
0 of the same type, which corresponds to a total

statistical operator ρ0 of the generalized canonical form ρ0 =
e−H̄0/Z̄0 the averaging yields for the characteristic function

gR(t, λ) = 〈eiλNR(t)e−iλNR 〉, (6)

where 〈· · ·〉 denotes the averaging with the statistical operator
ρ0. This result is also valid for interacting fermions.

2.2. Noninteracting fermions

For noninteracting fermions the characteristic function can be
expressed as a determinant in the one-particle Hilbert space
using Klich’s trace formula [7, 8]:

gR(t, λ) = det[1 + (eiλPR(t)e−iλPR − 1)n̄0]
≡ det[1 + a(t)n̄0] = det[1 + n̄0a(t)], (7)

where n̄0 = (eh̄0 + 1)−1 is the Fermi operator. It is determined
by the Fermi functions describing the initial state. The equality
in the second line holds because the inverse of n̄0 exists, in
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contrast to the zero-temperature case where n̄0 is a projection
operator.

Using eiλPR(t) = 1 + (eiλ − 1)PR(t) and the definition
d(λ) = eiλ − 1 the operator 1 + n̄0a can be written in the form
proposed by AI [11]:

1 + n̄0a = [eiλPR + n̄0(e
iλPR(t) − eiλPR)]e−iλPR

= {1 + d(λ)[(1 − n̄0)PR + n̄0 PR(t)]} e−iλPR

≡ [1 + d(λ)X (t)]e−iλPR . (8)

As n̄−1/2
0 exists and n̄0 and PR commute it is more convenient

to work with X̃(t) = n̄−1/2
0 X (t)n̄1/2

0 , i.e.

X̃(t) = (1 − n̄0)PR + n̄1/2
0 PR(t)n̄1/2

0 . (9)

This yields for the characteristic function for arbitrarily large
but finite systems

gR(t, λ) = e−iλNR det[1 + d(λ)X̃(t)]

= e−iλNR

NH∏

m=1

[1 + (eiλ − 1)X̃m(t)]

=
NH∑

n=0

cn(t)e
i(n−NR)λ, (10)

where NH is the dimension of the total one-particle Hilbert
space and NR of the one of the right lead. They are both
finite for finite lattice systems. The coefficients cm(t) can
be obtained recursively from the eigenvalues X̃n(t) of the AI
one-particle operator X̃(t) defined in equation (9) as described
briefly in the appendix.

Apart from the replacements N0,R → NR, Ntot → NH and
pm(t) → X̃m(t) this finite-temperature result has the same
form as the T = 0 approach which was used as the starting
point for the exact numerical calculation of the FCS [8]. The
probability distribution at finite temperatures is given by

wR(t, Q) =
NH∑

n=1

cn(t)δ(Q − (n − NR)). (11)

To obtain exact results for the FCS one first has to calculate
X̃(t) using the result for PR(t) and then obtain its eigenvalues
X̃m(t). This is done for the simplest case ML = MR = 1 in the
following section.

3. Exact results for ML = MR = 1

3.1. The model

In this section we present exact numerical results for the
probability distribution w(t, Q) for a one-dimensional tight-
binding model with a one-site (noninteracting) dot. The
unperturbed one-particle Hamiltonians of the subsystems are
given by

h0,a = −t‖
Na−1∑

m=1

(|am〉〈a(m + 1)| + h.c.),

hdot
0 = V0|0〉〈0|.

(12)

Figure 1. Eigenvalues of X̃(t) which differ from one and zero for
tL = 0.8, tR = 0.5 and V0 = 0.4 at time t = 200 for three different
temperatures, i.e. values of β. The full circles correspond to
β = 2000, which hardly differs from the zero-temperature result.
The open squares are the results for β = 10 and the open triangles
for β = 2.

The number of sites in the leads are given by Na . In |am〉
the label a takes the value 1 for a = R and −1 for a = L.
The hopping matrix elements in the leads t‖ are taken as unity
in the numerical calculations which leads to a total bandwidth
of 4. The eigenstates of the unconnected leads are standing
waves. The coupling between the subsystems is described by
the hopping term

v = −tL| − 1〉〈0| − tR|0〉〈1| + h.c. (13)

3.2. Numerical results

The first step to calculate the eigenvalues X̃m(t) is to obtain
PR(t) using the time dependence of the one-particle states
|ε(0)

α 〉:

〈ε(0)
α |PR(t)|ε(0)

β 〉 =
NR∑

m=1

〈ε(0)
α (t)|m〉〈m|ε(0)

β (t)〉. (14)

The time dependence of the states is calculated using the
spectral decomposition of the full one-particle Hamiltonian [8].
From the resulting NH × NH matrix one obtains X̃(t) as
prescribed in equation (9). In the following we show results
for identical temperatures in the initial subsystems and μL =
μdot > μR.

We begin with a generic example tL = 0.8, tR = 0.5 and
V0 = 0.4. As the coupling of the dot to the leads is asymmetric
the transmission probability at the resonance energy is less than
one. The results shown are for time t = 200. If twice the
number of lead sites Na is larger than vmaxt = 2t the results for
the eigenvalues X̃n , which differ from zero and one, become
independent of the Na . For the exact numerical results shown
we used NL = NR = 500. As X̃(0) = PR holds there are NR

eigenvalues of one and NL + 1 eigenvalues of zero at the initial
time. Therefore we show the eigenvalues in descending order
as a function of n − NR. In figure 1 the eigenvalues X̃n are
shown for three different temperatures.
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As mentioned in section 1 the ‘zero-temperature’ result
β = 2000 can be well described analytically except for
the narrow transition region to the zero eigenvalues which
is related to the logarithmic corrections in the long-time
limit [8, 9]. For β = 10 the main effect is to smooth out this
transition region. A new effect sets in at larger temperatures.
For β = 2 part of the eigenvalues with n < NR which are one
at the initial time get visibly reduced.

In order to understand this behaviour analytically we start
from the Levitov–Lesovik formula [3, 4]:

ln gR(t, λ) = t

2π

∫ B

−B
ln(1 + F(ε, λ)) dε, (15)

where B = 2 for the choice t‖ = 1 and

F(ε, λ) = T (ε)(d(λ) fL(ε) f̄R(ε) + d∗(λ) fR(ε) f̄L(ε)), (16)

with f̄a ≡ 1− fa . We approximate the integral in equation (15)
by a finite Riemann sum over N intervals of size 2B/N and use
the trapezoidal rule

ln gR ≈ t

2π

2B

N

×
N∑

j=1

ln

[
1 + F

(
−B +

(
j − 1

2

)
2B

N
, λ

)]
, (17)

which agrees with the integral in the limit N → ∞. As
equation (15) is itself an approximation for the large-time limit
we choose N = N(t) with

N(t) = t

2π
2B. (18)

Then the prefactor in the sum equals one and gR(t) takes a form
which can easily be compared with equation (10):

gR(t, λ) ≈
N(t)∏

j=1

[1 + F(ε j , λ)], (19)

where ε j ≡ −B + 2π( j − 1/2)/t .
In the low temperature regime kBTa � μL − μR the

approximation for the eigenvalues X̃ j can easily be read off
as the factor fR f̄L multiplying d∗ in F(ε, λ) in equation (16) is
exponentially small. With e−iλ(1 + d(λ)) = 1 the comparison
with equation (10) shows that the eigenvalues different from
one are given by

X̃ j ≈ T (ε j ) fL(ε j) f̄R(ε j ) ≈ T (ε j )( fL(ε j ) − fR(ε j )). (20)

At zero temperature this agrees with the result mentioned in
section 1 [8].

At arbitrary temperatures one has to factor 1 + F(ε, λ)

with F defined in equation (16) in the form

1 + F(ε, λ) = e−iλ(1 + a+(ε)d(λ))(1 + a−(ε)d(λ)). (21)

The comparison with equation (16) yields

a± = 1 + T ( fL − fR)

2
± w (22)

Figure 2. Long-time approximation equation (22) for the
eigenvalues X̃(t) plotted as a function of ε j for the parameter values
of figure 1. Filled dots: β = 2000, open squares: β = 10, open
triangles: β = 2.

with

w =
√(

1 + T ( fL − fR)

2

)2

− T fL f̄R

=
√(

1 − T ( fL − fR)

2

)2

− T fR f̄L

=
√(

1 − T ( fL + fR)

2

)2

+ T (1 − T ) fL fR. (23)

The second form for w is useful for the discussion of the
low temperature results and the third form shows that there is
an energy gap in the spectrum for non-perfect transmission.
It also shows that the factorization is simplest for perfect
transmission:

1 + F(ε, λ) = e−iλ(1 + fL(ε)d(λ))(1 + f̄R(ε)d(λ)). (24)

In figure 2 we show the analytical approximation
equation (22) for the eigenvalues for the parameter values
used in figure 1 as a function of the ε j . The result for β =
2000 (filled dots) is almost identical to the zero-temperature
results. The eigenvalues a−(εi) are nonzero in the energy
range between μR and μL and show the energy dependence
of the transmission probability. The eigenvalues a+(εi ) are
almost identical to one. Also for β = 10 (open squares)
the a+(εi ) equals one within the drawing accuracy while the
a−(εi) are very well approximated by equation (20) and show
the thermal broadening of the zero-temperature result. For
β = 2 (open triangles) equation (20) no longer presents a good
approximation for the a−(εi ) and the a+(εi ) are clearly smaller
than one in a large energy range.

In order to compare the approximate eigenvalues a± with
the exact numerical eigenvalues X̃n the a± have to be brought
into descending order. This is shown in figure 3. For β = 2 the
a− (open triangles) agree very well with the exact results apart
from the fact that there are pairs of almost equal eigenvalues.
As shown later this has a rather small effect for the calculation

4
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Figure 3. Comparison of the exact eigenvalues of figure 1 (shown as
full lines) with the approximations a− presented in descending order.
The results for β = 10 and 2 are shown in a restricted range.

Figure 4. Weights of the probability distribution wR(t, Q) for the
parameters of figure 1. The exact results are presented by the full
symbols, the approximation using equation (22) by the open ones:
β = 2: filled squares, open circles, β = 10: filled circles, open
squares, β = 2000: filled triangles, open triangles.

of the probability distribution wR. For β = 10 the deviations
are a bit larger. As shown earlier the transition region to
the zero eigenvalues for β = 2000 is not captured by the
approximation T (εi ) [8].

In order to obtain the probability distribution wR(t, Q)

from the eigenvalues X̃n the product in equation (10) has to
be evaluated recursively. The details are presented in the
appendix. The results for the parameters of figure 1 are shown
in figure 4. For β = 2 the exact result (full squares) agrees very
well with the one using the approximation of equation (22)
(open squares). For β = 10 the agreement of the exact result
(full circles) with the approximation (open squares) is still
rather good. For β = 2000 the filled and open symbols no
longer overlap.

The discrepancy between the exact results and the
approximation equation (22) is most prominent for perfect
transmission in the zero-temperature limit. While the Levitov–
Lesovik formula predicts a single delta function of weight one

Figure 5. Weights of the probability distribution wR(t, Q) for the
case of perfect transmission. The exact results are presented by the
full symbols, the approximation using equation (22) by the open
ones: β = 2. filled circles, open squares, β = 10: filled squares,
open circles, β = 2000: filled triangles, open triangles.

(‘zero shot noise’) the exact result clearly has a finite width [8]
as shown in figure 5, where the tL = 1, tR = 1 and V0 = 0 was
used leading to perfect transmission.

3.3. Perfect transmission

As the discrepancy for very low temperatures concerns the
width of the approximate distribution shown in figure 5 it is
useful to discuss the behaviour of the second order cumulant:

κ2(t) =
NH∑

n=1

X̃n(t)(1 − X̃n(t))

≈
N(t)∑

j=1

[a+(ε j )(1 − a+(ε j )) + a−(ε j)(1 − a−(ε j )]

=
N(t)∑

j=1

[T 2( fL f̄L + fR f̄R) + T (1 − T )( fL f̄R + fR f̄L)].

(25)

The (leading time order) shot noise contribution [13]
proportional to T (1− T ) vanishes for perfect transmission and
the remaining term is well known in the limit where the sum is
replaced again by the integral [1, 2, 4].

Because of the factorization in equation (24) of 1 + F for
perfect transmission the derivative of ln gR with respect to iλ
takes the simple form

2π

t

∂ ln gR(t, λ)

∂(iλ)
= μL − μR +

(
1

βR
+ 1

βL

)
iλ

+
∑

a

1

βa
ln

[
1 + e−βa(B−aμa)−iλ

1 + e−βa(B+aμa)+iλ

]
, (26)

where the factor a in aμa again takes the value 1 for a = R
and −1 for a = L. In the wide band limit βa(B − |μa|) � 1
the logarithmic terms can be neglected and wR is a Gaussian
in the Levitov–Lesovik approximation with a temperature-
independent mean value [4]. The fact that the average charge
transfer for β = 2 in figure 5 is slightly less than for β = 10

5
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Figure 6. Exact results (filled symbols) for second-order cumulant κ2

for perfect transmission as a function of time for three different
temperatures: β = 2000: filled squares, β = 100: filled triangles and
β = 10: filled circles. The dotted line shows the linear part t/(πβ)
for β = 10.

and β = 2000 is related to the correction term in equation (26)
which adds a constant contribution for λ = 0.

In the wide band limit ln gR(t, λ) can be calculated
analytically also for an energy-independent transmission
probability which differs from one [14].

Exact numerical results for κ2 are shown in figure 6 as
a function of time for system size NL = NR = 500 up to
times where the result is independent of this system size. For
β = 10 (filled circles) there is an almost linear increase of
κ2 rather quickly. The dotted line shows the linear increase
which follows from the finite-temperature Levitov–Lesovik
formula (see equation (26)). For β = 100 (filled triangles)
there is crossover from a logarithmic increase to a linear time
dependence around t ≈ 50. For β = 2000 the times
shown are too small to see the corresponding crossover and
the shown increase is logarithmic in time. This logarithmic
behaviour [8, 9, 15] is not captured by the approximate
eigenvalues a± in equation (22).

4. Long-time behaviour for general values of ML and
MR

To study the long-time limit one first takes the thermodynamic
limit in which the energies of the unperturbed eigenstates
|ε, a, i〉 with i = 1, . . . , Ma of the left and right lead form ML

and MR continua extending from ε
a,i
min to εa,i

max which usually
partially overlap. For a given energy ε the ‘open scattering
channels’ [16] in the leads are those for which ε ∈ [εa,i

min, ε
a,i
max].

Their number is denoted as Ma(ε) � Ma . For a given ε

we order the channels with i = 1, . . . , Ma(ε) as the open
channels and i = Ma(ε) + 1, . . . , Ma as the closed channels.
The dimension of the scattering matrix s(ε) for a single
particle [16] is given by M(ε) = ML(ε) + MR(ε) � M , with
Ma(ε) � 1 in order to have scattering at all.

In the following we use a Dirac notation in the M(ε)-
dimensional space with the orthonormal basis |a, i) where the

i run from 1 to Ma(ε). Then the projection operators P̃a(ε) on
the lead channels are

P̃a(ε) =
Ma(ε)∑

i=1

|a, i)(a, i |. (27)

The energy dependence of the P̃a(ε) is only via selection of the
open channels.

For the general geometry discussed in section 2 the long-
time linear in t contribution to ln gR takes the form [3, 12]

ln gR(t, λ) = t

2π

∫ εmax

εmin

ln det[1 + c(ε, λ)] dε. (28)

Here c(ε, λ) is the M(ε) × M(ε) matrix:

c(ε, λ) = [s†(ε)e(λ, ε)s(ε)e†(λ, ε) − 1] f (ε), (29)

with

e(λ, ε) = P̃L(ε) + eiλ P̃R(ε) = 1 + d(λ)P̃R(ε)

f (ε) = fL(ε)P̃L(ε) + fR(ε)P̃R(ε).
(30)

The values of εmin and εmax depend on the details of the
microscopic model.

Now one can essentially repeat the steps used to derive the
AI-form equation (10) to obtain

det[1 + c(ε, λ)] = e−iλMR(ε)det[1 + d(λ)X̃(ε)] (31)

with

X̃ = (1 − f )P̃R + f 1/2s† P̃Rs f 1/2. (32)

The determinant in equation (31) can be calculated by first
solving the eigenvalue problem for X̃(ε). As the M(ε)× M(ε)

matrix X̃(ε) in equation (32) is temperature-dependent it looks
as if one has to solve a different eigenvalue problem for
each temperature. In the following we show that this is not
necessary. In fact, it is sufficient to solve a single MR(ε) ×
MR(ε) eigenvalue problem to obtain a new generalized long-
time approximation for arbitrary temperatures. To show this
we write

X̃(ε) =
MR(ε)∑

j=1

[ f̄R|R, j)(R, j | + |b j)(b j |] (33)

with

|b j) = f 1/2s†|R, j), (b j | = (R, j |s f 1/2. (34)

Multiplying the eigenvalue problem X̃ |Xα) = Xα|Xα) from
the left with (bi | yields

MR(ε)∑

j=1

[(bi |R, j)(R, j |Xα) f̄R + (bi |b j)(b j |Xα)] = Xα(bi |Xα)

(35)
and multiplying with (R, i | gives for the overlaps (R, i |Xα):

(R, i |Xα) = 1

Xα − f̄R

MR(ε)∑

j=1

(R, i |b j)(b j |Xα). (36)

6
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Inserting this into equation (35) leads after multiplication with
Xα − f̄R to
MR(ε)∑

j=1

[ f̄R(bi |P̃R|b j) + (Xα − f̄R)(bi |b j)](b j |Xα)

= (X2
α − f̄R Xα)(bi |Xα). (37)

This equation can be rewritten using

(bi |b j) = fRδi j + ( fL − fR)(R, i |s P̃Ls†|R, j). (38)

Therefore a single Hermitian operator in the MR(ε)-
dimensional subspace spanned by the |i〉 ≡ |R, i) determines
the original eigenvalue problem

[
( fL − fR)Xα − fL f̄R

]
τ |Y (R)

α 〉 = (X2
α − Xα)|Y (R)

α 〉, (39)

where |Y (R)
α 〉 ≡ P̃Rs f 1/2|Xα) and

τ = P̃Rs P̃Ls† P̃R = (P̃Rs P̃L)(P̃Rs P̃L)† ≡ AA†. (40)

The elements of the matrix A are the left to right transmission
amplitudes1.

The matrix elements of τ are given by (i, j ∈ [1, MR(ε)])

τi j(ε) =
M(ε)∑

l=MR(ε)+1

sil(ε)s
†
l j (ε). (41)

After solving the eigenvalue problem τ |τμ〉 = τμ|τμ〉 the
determination of the Xα in equation (39), after multiplying
with 〈τμ|, is reduced to solving a quadratic equation. With
α → μ,± the solution is

Xμ,± = 1 + τμ( fL − fR)

2

±
√(

1 + τμ( fL − fR)

2

)2

− τμ fL f̄R. (42)

This is like equations (22) and (23) with T (εi ) replaced by
τμ(εi).

For MR(ε) = 1 there exists only one eigenvalue τ1, which
for ML(ε) = 1 is given by |s12(ε)|2 = T (ε). For MR(ε) = 1
and arbitrary values of ML(ε) the single eigenvalue is given by

τ1(ε) =
M(ε)∑

l=2

|s1l(ε)|2. (43)

This corresponds to the simplest generalization of the Levitov–
Lesovik formula [8].

For MR(ε) = 2 the two eigenvalues of τ (ε) are given by

τ1,2 = trτ

2
±

√(
trτ

2

)2

+ detτ . (44)

Zero-temperature results for this case were presented
earlier [12] using a different derivation. For the special case
ML(ε) = 1 the determinant of τ vanishes and only one
eigenvalue of τ is different from zero. Generally the number

1 The matrix A is usually denoted as t [1]. We chose not to call it t as we use
this letter for the t operator.

of eigenvalues of τ which differ from zero is less than or equal
to M<(ε), where M<(ε) is the smaller of the two Ma(ε).
This stems from the fact that AA† and A† A have the same
nonvanishing eigenvalues with the same multiplicities. For
ML(ε) < MR(ε) one better calculates the eigenvalues of A† A
which is a Hermitian ML(ε) × ML(ε) matrix.

In order to compare our general result with the Levitov–
Lesovik formula one can use

e−iλ(1 + d(λ)Xμ,+)(1 + d(λ)Xμ,−)

= e−iλ[1 + (1 + ( fL − fR)τμ)d(λ) + τμ f̄R fLd(λ)2]
= 1 + τμ(d(λ) fL f̄R + d(λ)∗ fR f̄L). (45)

With det(1 + d(λ)X̃α(ε)) = ∏
α(1 + d(λ)Xα(ε)) this yields

ln gR ≈ t

2π

×
∫ εmax

εmin

M<(ε)∑

μ=1

ln[1 + τμ(d fL f̄R + d∗ fR f̄L)] dε. (46)

This completes the derivation of the generalization of
the Levitov–Lesovik formula for two general quasi-one-
dimensional leads2. The integration has to be split up into NI

energy intervals from ε(i) to ε(i+1), where i = 1, . . . , NI and
ε(1) = εmin and ε(NI +1) = εmax. In the intervals the number
of open channels determined by the Ma(ε) is constant. We
denote the constant value of M<(ε) in the mth interval by
M (m)

< . The splitting is discussed in the following section for
a simple model system.

With the eigenvalues Xα(ε) of the M(ε) × M(ε) matrix
X̃(ε) and the transition from the integral to a finite Riemann
sum as in equation (17) one can obtain an approximation for
the eigenvalues of the operator X̃(t) defined in equation (9)
which generalizes the introduction of the a± in section 3. The
approximation for gR is

gR(t, λ) ≈
∏

Im

e−iλ2M(m)
< Nm (t)

Nm (t)∏

j=1

2M(m)
<∏

α=1

[1 + d(λ)Xα(ε
(m)
j )]

(47)
with Nm(t) = (ε(m+1) − ε(m))t/2π and the energy variables
are given by ε

(m)
j = ε(m) + 2π( j − 1/2)/t . Therefore the

approximation for the eigenvalues X̃m(t) which differ from 1
and 0 are given by Xα(ε

(m)
j ). The time dependence enters via

ε
(m)

j .

5. Almost perfect stripe

In order to elucidate our general result equation (46) we
consider leads which are both stripes of width N⊥. Analytical
results for the eigenvalues τμ are presented for the case where
the dot region is identical to the leads except for a single site
impurity:

h = −
∞∑

m=−∞

N⊥−1∑

n=1

[t‖|m, n〉〈m + 1, n| + t⊥|m, n〉〈m, n + 1|

+ h.c] + V0|0, n0〉〈0, n0| ≡ h̃0 + ṽ0. (48)
2 After submitting this paper the author was informed by Yu Nazarov of
the appearance of the book [17]. There the leading-time order expression
equation (46) is presented without a derivation and without mentioning the
subtleties discussed here.
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The tildes are introduced to indicate that the separation of the
Hamiltonian in the unperturbed part and the perturbation is
different from the one used in equations (2), (12) and (13).

For V0 = 0 this is an ideal infinite stripe with eigenvalues

εk,l = −2t‖ cos k − 2t⊥ cos
lπ

N⊥ + 1
≡ ε

‖
k + ε⊥

l , (49)

with k ∈ [−π, π] and l = 1, . . . , N⊥. For a given energy ε

there are 2N⊥(ε) � 2N⊥ scattering channels open for which
|ε − εl | � 2|t‖| holds. The standing wave lead states |ε, a, l〉
are labelled by a = L, R and the transverse quantum numbers
l of the open channels. The scattering matrix is obtained via
the t operator [16]

t (z) = v + vg(z)v, (50)

where g(z) = (z − h)−1 is the exact resolvent and v is the
generalization of the operator connecting the leads with the dot
in equation (13). For the almost perfect stripe it is given by

v = −t‖
N⊥∑

n=1

(| − 1, n〉〈0, n| + |0, n〉〈1, n| + h.c)

= −t‖
N⊥∑

l=1

(|l(−1)〉〈l(0)| + |l(0)〉〈l(1)| + h.c), (51)

where the |l(m)〉 are the standing wave eigenstates in the
perpendicular direction formed from the states |m, n〉. Then
the t-matrix elements take the simple form

〈ε, a, l|t (z)|ε, a′, l ′〉 = t2
‖ 〈ε, a, l|l(a)〉

× 〈l(0)|g(z)|l ′(0)〉〈l ′(a′)|ε, a′, l ′〉, (52)

where |l(a)〉 is the standing wave state at n = −1 for a = L and
n = 1 for a = R. The t-matrix elements enter the scattering
matrix for z = ε + i0.

The exact resolvent matrix elements can easily be
calculated for the Hamiltonian in equation (48) as the site
impurity provides a separable perturbation. With g̃0(z) =
(z − h̃0)

−1 one obtains

〈l(0)|g|l ′(0)〉 = 〈l(0)|g̃0|l ′(0)〉

+ 〈l(0)|g̃0|0, n0〉V0〈0, n0|g̃0|l ′(0)〉
1 − V0〈0, n0|g̃0|0, n0〉 . (53)

For the open channels

〈l(0)|g̃0(ε + i0)|l ′(0)〉 = δll′
−i√

B2
‖ − (ε − εl)2

(54)

holds, with B‖ = 2t‖. The g̃0-matrix element in the
denominator in equation (53) involves contributions from the
open and closed channels:

〈0, n0|g̃0(ε + i0)|0, n0〉 =
∑

l(open)

−i|〈l(0)|0, n0〉|2√
B2

‖ − (ε − εl)2

+
∑

l(closed)

|〈l(0)|0, n0〉|2√
(ε − εl)2 − B2

‖

≡ −iπρ̃00 + g̃ R
00. (55)

While the contribution of the open channels is purely
imaginary the one of the closed channels is real. To complete
the calculation of the t-matrix elements in equation (52) the
overlaps 〈ε, a, l|l(a)〉 are needed. They are related to the
density of states at the boundary of a semi-infinite chain:

t‖〈ε, a, l|l(a)〉 =
(

1

2π

√
B2

‖ − (ε − εl)2

)1/2

. (56)

This leads to the scattering matrix

sal,a′l′(ε) = δll′ (δaa′ − 1) + (l|n0)u(n0|l ′) (57)

with

(l|n0) = 〈l(0)|0, n0〉√
B2

‖ − (ε − εl)2
,

u = iV0

1 − V0g̃ R
00 + iπV0ρ̃00

.

(58)

With the N⊥(ε) × N⊥(ε) projected scattering matrix sRL =
−1+|n0)u(n0| the operator τ defined in equation (40) is given
by

τ = 1 − (u + u∗ − (n0|n0)|u|2)|n0)(n0|. (59)

Because of the separable form of τ − 1 the only eigenvalue of
τ different from 1 is given by

τ1 = 1 − (u + u∗ − (n0|n0)|u|2)(n0|n0). (60)

Using (n0|n0) = ∑
l(open)(n0|l)(l|n0) = ρ̃00/2 one finally

obtains

τ1 = (1 − V0g̃ R
00)

2

(1 − V0g̃ R
00)

2 + (πV0ρ̃00)2
,

τ2 = τ3 = · · · = τN⊥(ε) = 1.

(61)

The ‘perfect transmission’ eigenvalues τi = 1 yield
contributions to ln gR of the form discussed following
equation (26). As the energy integrations in equation (46) for
fixed M<(ε) are over restricted energy ranges the logarithmic
corrections in equation (26) are important.

The simplest case is a N⊥ = 2 ladder system. For the
special case t‖ = t⊥ = 1 there are two bands corresponding
to ε⊥

l = ±1 of width 4. Therefore one has to distinguish the
energy intervals [−3,−1], [−1, 1] and [1, 3] with one, two and
one open channel. When both channels are open τ2 = 1 and
g̃ R

00 vanishes. This implies τ1 → 0 for V0 → ∞, while τ1 stays
finite in this limit when only one channel is open.

6. Summary

In this paper we have generalized the exact numerical method
to calculate the FCS for large but finite systems [8] to finite
temperatures using the eigenvalues of the operator X (t) in
the Hilbert space of a single particle introduced by Abanov
and Ivanov [11]. In the long-time limit the results for
the probability distribution for the number of transmitted
particles agree well with the result using the Levitov–Lesovik
approximation [3, 4] except for the case of (almost) perfect
transmission.
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Using a similar identity for the finite-temperature leading
order in time result for the logarithm of the characteristic
function a new explicit result for ln gR was presented in
equation (46) for two general quasi-one-dimensional leads
which involves the eigenvalues of a matrix formed from the
transmission amplitudes. For a simple model these eigenvalues
were calculated analytically.
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Appendix. Recursive step in the calculation of
wR(t, Q)

The numerical finite-temperature results presented in section 3
were obtained by first calculating the eigenvalues X̃m(t) and
then performing the product in equation (10). This is done
iteratively as follows.

Let FN (x) be a polynomial given in the form of a product

FN (x) =
N∏

i=1

(ai + bi x) =
N∑

m=0

c(N)
m xm . (A.1)

The coefficients c(N)
m are obtained iteratively by calculating the

polynomials FM (x) with coefficients c(M)
m starting with M = 1

and using

FM+1(x) = (aM+1 + bM+1x)FM(x)

=
M∑

m=0

(aM+1c(M)
m xm + bM+1c(M)

m xm+1). (A.2)

This leads to the recurrence relations

c(M+1)

0 = aM+1c(M)

0

c(M+1)
m = aM+1c(M)

m + bM+1c(M)
m−1, 1 � m � M

c(M+1)
M+1 = bM+1c(M)

M .

(A.3)
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